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The reaction-diffusion lattice-gas model is an interacting particle system out of 
equilibrium whose microscopic dynamics is a combination of Glauber (reaction) 
and Kawasaki (diffusion) processes; the Glauber rate c(s;x) at site x when 
the configuration is s satisfies detailed balance at temperature T, while the 
Kawasaki rate Fc(s;x, y) between nearest-neighbor sites x and y satisfies 
detailed balance at a different temperature T'. We report on the phase diagram 
of that system as obtained from a series of Monte Carlo simulations of steady 
states in two-dimensional lattices with arbitrary values for T', T, and F; this 
generalizes previous analytical and numerical studies for F--, oo and/or T' ~ oo. 
When the rates are implemented by the Metropolis algorithm, the system is 
observed to undergo various types of first- and second-order (nonequilibrium) 
phase transitions, e.g., one may identify Onsager (equilibrium) as well as 
Landau (mean-field) types of continuous phase transitions. 

KEY WORDS:  Nonequilibrium steady states; reaction-diffusion stochastic 
models; competing dynamics; nonequilibrium phase transitions; Monte Carlo 
simulations. 

C o n s i d e r  a l a t t i ce -gas  m o d e l  sys tem on  a squa re  la t t ice  wi th  N = L 2 sites. 

T h e  c o n f i g u r a t i o n  s =  {Sx; x ~ Z  a, Sx = _ 1 }  evo lves  in t ime  due  to a c o m -  

b i n a t i o n  of  t w o  i n d e p e n d e n t  processes .  N a m e l y ,  s changes  s tochas t i ca l ly  

due  to b o t h  G l a u b e r  (1) c r e a t i o n - a n n i h i l a t i o n  o r  reaction processes  g o v e r n e d  

by a h e a t  b a t h  at  t e m p e r a t u r e  T, a n d  K a w a s a k i  (2) diffusion processes  

caused  by n e a r e s t - n e i g h b o r  (nn )  e x c h a n g e s  wh ich  occu r  as if  the  a s soc ia t ed  

b a t h  t e m p e r a t u r e  was  T '  ins tead.  C o n s e q u e n t l y ,  the  c o n f i g u r a t i o n a l  
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probability distribution #(s; t) evolves in time according to a Markovian 
master equation(3): 

d#(s; t)/dt = (L~ + ELK) #(s; t) (l) 

where F is the ratio of attempted exchanges per bond to attempted 
reactions per site, L ~ = Z x  [ G x - 1 ]  c(s;x), with Gxg(s)=g(sX), 
Lr : -SEix-yl  1 [Kxy-  1] c(s; x, y) with Kxyg(s)= g(sXY), and g(s) stands 
for an arbitrary function of the configuration. Here, s x represents the con- 
figuration obtained from s by applying the operator L~, i.e., by changing 
Sx to -Sx,  and s xy is the one obtained from s after the interchange of the 
occupation variables at sites x and y as performed by LK. 

The respective rates c(s; x) and c(s; x, y) for the reaction and diffusion 
processes both satisfy detailed balance, but with respect to different heat 
temperatures. That is, 

L~ #~q(S)=0 (2) 

with 

{~s ) -1 kt~(s) = exp[-H(s)/kBT]t exp[-H(s)/kBT] (3) 

where H(s) represents the system configurational Hamiltonian, which will 
be assumed for simplicity to be 

N(s)=--J  ~ sxsy, J > 0  (4) 
Ix -- Yl = I 

and 

LK #~rq(S; m) = 0 (5) 

with 

T'S" [ #eq( , m ) = Z ( / ~ ) - l e x p  - H ( s ) / k . T ' + # ~  sx] (6) 

Here, fi = fi(m), namely m = N l(d/dfi) lnZ(/i), where Z(~) - 
Zs exp[ -H(s)/kBT' + ~Y'.,, Sx]. 

That model has two familiar, particularly simple versions which may 
serve as a canonical reference for the nonequilibrium situations of interest 
here. Namely, when F-= 0 or c(s; x, y) - 0 one recovers the Glauber case (l) 
with a nonconserved order parameter. Any rate c(s; x) satisfying detailed 
balance [which implies (2)] drives the system to the same steady state. 



Reaction-Dif fusion Lattice-Gas Model 1285 

This is the equilibrium Gibbs state (3) corresponding to temperature T and 
energy H(s), which is known (4~ to undergo, in the infinite-volume limit 
(N ~ Go), a second-order phase transition at a finite temperature T ~ That 
transition also occurs (at T '~ when c(s; x)-=0 for any rate Fc(s; x, y) 
satisfying detailed balance [which implies (5)] and any finite F; the system 
reduces now to the lattice-gas model with Kawasaki dynamics (21 whose 
steady states are Gibbs states (6) at temperature T' with a fixed value m 
for the order parameter. 

The situation is very different otherwise. That is, the steady state 
implied by the competing dynamics in Eq. (1) is a nonequilibrium one in 
general, and it may not be unique. For instance, it may depend, even 
qualitatively, on the specific form assumed for the reaction and diffusion 
rates, c(s; x) and c(s; x, y). Moreover, the infinite-volume system may suf- 
fer, as in an equilibrium condition, instabilities leading to (nonequilibrium) 
continuous or discontinuous phase transitions, and one should expect these 
and other features of steady states to depend, in some way to be deter- 
mined, on the values for the parameters T, T', and F and on the details of 
the dynamical processes. 

These and other facts were already indicated by De Masi et al., (3~ who 
considered the model in the limit F ~ ~ and T ' =  o% i.e., the most random 
and microscopically fastest diffusion process, as a continuation of previous 
interest on reaction-diffusion stochastic models. (5-8~ Subsequently, several 
versions of the same model in a d-dimensional space have been studied by 
different methods. (9-14~'3 In particular, concerning the study of steady states 
for d = 2, which is our goal in the present note, they have been investigated 
by mean-field (9) and Monte Carlo methods (11'~3) for arbitrary F when 
T ' =  oe. The main conclusion from those studies concerns the presence of 
a (nonequilibrium) phase transition changing, as F is increased, from 
second to first order; i.e., it seems there is some kind of "tricritical point" 
separating those two behaviors. Nevertheless, given that only some one- 
dimensional versions of the model above have been amenable to an exact 
solution, the general understanding of the phase diagram is still, in spite of 
being quite interesting in itself and also as a paradigm of nonequilibrium 
phenomena, rather incomplete. For instance, concerning the case d =  2, 
both the behavior in the neighborhood of the supposed tricritical point and 
the qualitative details of the reported discontinuous transitions remain 
puzzling; also, any information concerning variations of T' is lacking. We 
present in this note a first attempt to study these questions. Namely, we 
investigate by Monte Carlo methods a two-dimensional system with 

3 See refi 10 for a review. 
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Metropolis rates when the relevant parameters (T, T', and F)  vary over 
their natural range [0, oo ]. 

The procedure we followed is essentially the usual one in an MC 
experiment, ~ except that after a site x is chosen at random from 
a square lattice, then, with probability p, the variable sx is exchanged 
with one of its nn y according to a rate c(s; x, y) (which is computed 
as if the system was in contact with a heat bath at temperature T') 
and, with probability l - p ,  Sx is changed to - s x  with a rate c(s;x) 
(computed as if the bath temperature was T). This corresponds, except for 
a renormalization of time units which is irrelevant for the steady state, to 
having F =  p/d(1 - p), 0 <~ p <~ 1. 

The rates chosen here are the ones introduced by Metropolis 
et al., ~ i.e., c(s; x, y) = min{ 1, exp(-6H/kB T')} and c(s; x) = 
rain{l, exp( -6H/kB  T) }, where 6H is the change in the configurational 
energy (4) which would cause the attempted move. That choice was only 
motivated by the fact that in practice it is most efficient when trying to 
simulate true (stabilized) "ferromagnetic ordering" disturbed by diffusion. 
As mentioned above, however, the choice of rates may prejudice the nature 
of the nonequilibrium steady state. 

We considered different lattices sizes L 2, L~< 100, with periodic 
boundary conditions, attractive ( J > 0 )  nn interactions, and a variety of 
values for the parameters T, T', and p. Relatively long evolutions, typically 
between 10 4 and 106 MC steps (per lattice site), were required to obtain 
final steady states with good statistics. Once the final steady state was 
reached, we monitored in particular the short-range order parameter 
defined <17) as a = (N+ + ) ( N _ _  ) ( N + _  ) 2 where ( . )  represents the 
MC average over configurations and N + _ ,  N+ +, and N _ _  are, respec- 
tively, the number of three different nn pairs which may occur in the 
system, and also the long-range order parameter m = N  l ( Z x S x ) ,  the 
configurational energy e = - ( 2 J N )  -1 ( H ) ,  and their respective fluc- 
tuations C = N - I [ ( H )  2 -  ( g Z ) ]  and X = J [ ( 2 x s x )  2 -  ( (2xsx )2 ) ] .  
Notice that the precise relation between the latter and the derivatives 
de/dT, de/dT', and dm/dl~ is rather unclear in the present nonequilibrium 
situation. 

The main global result concerns the nature of the phase transitions 
suffered by the system. We found it convenient to consider varying values 
of the "reaction temperature" T for selected pairs of values of the velocity 
and temperature of the diffusion process (p, T'). Also, the MC analysis 
becomes easier when one recognizes the existence of three different types of 
phase transitions as follows. 

Type I is characterized by a continuous behavior of e and m, as in a 
second-order phase transition with a reaction critical temperature Tc which 
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is a funct ion of both  p and  T'.  The f luctuations C and  X depict divergences 
at both  sides of T,., the one for C being completely symmetrical,  and the 

short-range order parameter  a describes a peak (cf. Fig. 1) which is lop- 
sided as well as the divergence of X, i.e., a and X behave asymmetrical ly 
a round  To. The peak for a becomes rather  acute as N is increased. Repre- 
sentative cases showing that  k ind of behavior  are, for instance, 

(p, T ' / T  ~ = (0.95, 1), (0.8, 1), (0.6, 0.1), (0.6, 1), and (0.6, 10), and also the 
case ( 0 . 6 , ~ ) ,  which was studied before in ref. 13; here T ~  

represents the equil ibrium, Onsager  critical temperature.  Also noteworthy 
are the facts that  the data  for e and  m can apparent ly  be mapped  onto  a 

single curve by simply representing them versus T/To(p,  T'),  and that  such 
a c o m m o n  curve seems to correspond, apart  from the expected finite-size 

effects, to the exact Onsager  solut ion for the equi l ibr ium case; we shall 
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Fig. 1. The short-range order parameter a versus reaction temperature T in units of the equi- 
librium, Onsager critical temperature T o for a given diffusion temperature, T'/T o = 10, and 
several velocities, p = 0.6 (squares, type I behavior), p = 0.95 (triangles, type II), and p =0.8 
(circles). The latter case, near the transition between types I and II that we locate around 
pt~0.8 at the indicated diffusion temperature, indicates (17) a crossover toward classical 
behavior as one approaches p,. The dashed lines are guides to the eye. The inset illustrates 
type III behavior (actually, the symbols are for p = 0.95 and T'/T o = 0.1). The solid line in the 
inset represents the exact equilibrium result assuming a=  �88 +e)2-4m2](1-e)2. {17) In 
spite of some similarity between the two behaviors in the inset, the one obtained by MC 
definitely corresponds to a discontinuous phase transition with strong metastabilities. 
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come to this fact later. Concerning C and X, we observe a similar scaling 
property, except when T' considerably differs from T ~ i.e., for T' >> T o and 
for T'  ,~ T~ such a departure from a common behavior in some occasions 
seems related to the expected breakdown of the fluctuation-dissipation 
relations. In any case, it should be noticed that, as will also come out 
later, the cases T ' <  T o and T ' >  T o are not equivalent, as one should 
probably expect. 

Type II is properly represented by the cases (p, T'/T ~ = (0.95, 10), 
(0.95, 7), and (0.85, 10), i.e., p is now closer to unity and T' >> T ~ This is 
characterized (cf. Fig. 1) by well-defined discontinuities in the quantities e, 
m, a, C, and X at some reaction temperature; for instance, Tc ~ 0.955T ~ for 
(p, T'/T ~ = (0.95, 10). Moreover, during the time evolution of e, m, and o- 
near the transition point, the system usually displayed metastable states 
decaying toward the final steady state in a time of order 10 4 MC steps. 

Finally, type III can be illustrated by (p, T'/T~ (0.95, 0.1), 
(0.95, 0.75), and (0.85, 0.1). The system also suffers now a discontinuous 
phase transition, which occurs around a reaction temperature Tc ,~ 0.915T ~ 
for (p, T'/T ~ = (0.95, 0.1 ), but this essentially differs from the type II case. 
Actually, the respective regions for type II and type IH are well separated 
in the phase diagram, as indicated by Fig. 3. From a practical point of 
view, the main difference probably concerns the fact that type III is not 
very suitable for an MC simulation due to the systematic presence of very 
slow evolutions and (long-lived) metastable states, which were typically 
observed to last more than 105 MC steps. Moreover, while the behavior of 
m essentially resembles the discontinuous one we described before for 
type II, other quantities seem to behave rather differently. The energy, for 
instance, while being also discontinuous at To, always remains larger than 
for type II; it is very close to the Onsager value for T <  T~; and it under- 
goes a jump which is one order of magnitude smaller than the one expected 
in the light of the situation for type II. There are also some obvious 
differences between the behaviors for a shown by Fig. 1, and the same 
conclusion follows when comparing the fluctuations C and Jr. 

We have also monitored the actual lattice configurations at selected 
instants of time; these greatly helped in identifying the above types of 
behaviors. This is illustrated by Fig. 2 confirming the existence of distinct 
degrees of order for the low-temperature states corresponding to systems of 
type II and III, respectively. That is, while the latter have the typical aspect 
of efficiently condensed states with long-range order which manifests itself 
in two well-separated phases including a rather compact liquid phase, the 
former are characterized by a relatively short-range order manifesting itself 
in a distribution of small clusters. 

The relevant phase diagram of the system occurs in a three-dimen- 
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sional space (p, T', T) where one is interested in the reaction transition 
temperature Tc for each pair of values assigned to the diffusion parameters 
p and T'. Our results are summarized in Fig. 3. That is, for any diffusion 
temperature T' and p < 0.7, one obtains type I behavior with a critical tem- 
perature Tc(p, T') which decreases monotonously with increasing T'. 
Increasing the value of p, however, essentially modifies the phase diagram. 
For instance, when p = 0.85 we only find type I behavior within the range 
O.I<~T'/T~ while we have type II for T'>~7T~ moreover, the 
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Fig. 2. Snapshots of the lattice configurations for different types of behaviors: (a) type II, 
namely p = 0 , 9 5  and T'  =7 ,  where the transition occurs at Tc~,0.955, when T=0 .95  < T,,; 
(b) same, but T = 0 . 9 6  > T~; (c) type lII, namely p = 0.95 and T'  =0.25, where the transition 
occurs at Tc ~ 0.925, for T =  0.92 < To; (d) same, but T =  0.93 > T~. Temperatures are always 
in units of the equilibrium critical temperature T o . 
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Fig. 3. Different sections of the system phase diagram as obtained from the MC analysis. 
The trends here are quite consistent with the exact results for T' ~ m and p = 1 (not shown) 
in refs. 11 and 13. Solid lines indicate type I transitions, dotted lines are for type lI, and 
dashed lines are for type III. The error bars are indicated. The temperature is always in units 
of T ~ the Onsager equilibrium temperature. The meaning of the symbols is as follows: 
(a) (T, T') for p=0 .6  (circles), 0.85 (squares), and 0.95 (triangles); (b) (T, p) for T'=0.1 
(squares) and 10 (circles). The inset represents the resulting schematic (p, T') phase diagram 
with the three regions of different behavior. The symbols in the inset indicate sampled points. 
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transition reaction temperature Tc(p, T') first increases with increasing T', 
reaches a maximum around T' ,~2T ~ and slowly decreases afterward. 
Those changes occur even more markedly for p = 0.95, where the range 
0.8 < T ' / T ~  5.5 is characterized by type I behavior, type II occurs for 
T'~> 5.5T ~ type III for T'~< 0.8T ~ and To( p, T') changes similarly with 
T', showing a relatively steeper maximum around T ' ~ 2 T  ~ It is also 
notable that we observe Tc(p, T' = T ~ ,,~ T ~ independent of p; on the con- 
trary, when one increases the diffusion velocity p for both T ' /T  ~ = 10 and 
0.1 the transition temperature To(p, T') decreases monotonously, e.g., it 
tends toward the exact or MC values reported in refs. 11 and 13 for 
T ' ~  ~ .  Also, for p>0 .8  the transition is type I only for intermediate 
values of T', while it becomes discontinuous for both small and large 
values of T'; for instance, the discontinuities are type II for T' = 10T ~ and 
type III for T ' =  0.1T ~ This situation is fully consistent with the reported 
existence when T' ~ oe of a "triccritical point" at p = p, = 0.83 _+ 0.01 
which separates second-order phase transitions for p < Pt from first-order 
transitions for p < pt .(11) 

The MC analysis also provided some interesting information concern- 
ing the critical behavior in case of type I phase transitions. That is, most 
data in that region indicate that the system undergoes a continuous phase 
transition which is qualitatively indistinguishable from the one occurring 
for equilibrium states. (4) More precisely, in addition to the simple scaling 
reported before, the present nonequilibrium phase transitions are typically 
characterized by Onsager critical exponents. In fact, the data in region I of 
Fig. 3b usually suggest that fl~0.125 and 7',~ 1.75. Such a consistency 
between the data here and the Onsager solution, however, clearly breaks 
down as one approaches the region in the phase diagram corresponding to 
type II behavior. That is, the type I data which are close to the region 
corresponding to that first-order phase transition strongly suggest a 
changeover from Onsager to Landau (18) (i.e., classical or mean-field) criti- 
cal exponents. That changeover in the value for the critical exponents is 
also evidenced by the behavior of the short-range order parameter o-. That 
fact is illustrated by the main graph in Fig. 1, representing ~(T) for 
T ' =  10T ~ and selected values of p, namely for p = 0.6, 0.8, and 0.95 (one 
obtains a similar situation when one fixes p and varies T'): While the graph 
for p = 0.6 (which is well inside the type I region) presents a peak whose 
finite-size scaling analysis (17) makes it quite consistent with the one 
obtained from the Onsager solution (see the inset for Fig. 1), the one for 
p = 0.8 (which is very near the presumed transition from type I to type II 
regions) depicts a smooth monotonous behavior. This is indeed a confirma- 
tion of that changeover in critical behavior, because a recent study of the 
scaling and other general properties of o-(T) has proved (~7) that any n o n -  
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classical critical behavior is associated with the existence of a finite peak 
around To, while the peak is absent for a continuous phase transition with 
classical exponents, in particular when fl = 1/2 and ~ = 0. 

Summing up, we have studied by Monte Carlo methods a two-dimen- 
sional lattice gas or Ising model with attractive nearest-neighbor interac- 
tions whose dynamics consists of a competition between reaction (creation- 
annihilation or spin-flip) and diffusion (nearest-neighbor exchange) 
processes, with p /2(1-p)  the relative probability of attempted exchanges 
per bond to attempted flips per site, both driven by canonical heat baths 
characterized by different temperatures, say T and T', respectively. This 
generalizes previous extensive studies by Lebowitz and collaborators ~3'1~ 
and by others ~5 9,12-14) mainly concerned with the rigorous derivation of 
hydrodynamic-type macroscopic equations for microscopic models and 
with the study of the nature of nonequilibrium ordering and phase 
transitions in condensed matter physics. The present study concerns the 
latter problem. 

The resulting phase diagram for the stable (nonequilibrium) 
homogeneous steady states of that generalized model is very rich and inter- 
esting, even for a given choice of the rates for the reaction and diffusion 
processes (the choice by Metropolis et aL~16)). As a matter of fact, while the 
limit p ~ 1 and T ' ~  ~ represents pure mean-field behavior and lack of 
correlations, the system undergoes a variety of first- and second-order 
phase transitions as one samples the parameters p, T, and T'. That is, for 
small values of the velocity p of the disturbing diffusion process, say for 
p < 0.7, the system always displays (for appropriate pairs of values of the 
two relevant temperatures) a continuous phase transition with Onsager 
critical exponents, and other quantities may straightforwardly be scaled to 
the equilibrium ones. When p is large enough, however, the system may 
undergo as well discontinuous phase transitions of several kinds. Namely, 
for a fixed large value of p, the transition at low reaction temperatures T 
is first order with strong discontinuities when T' remains small (say 
T ' ~  0.1T ~ where T o is the Onsager critical temperature), while for large 
T' (say T' ~ 10T ~ it is only weakly first order in some quantities. Further- 
more, while the segregated states for small T ' resemble those encountered 
in the simulation of spinodal phenomena, which are positively charac- 
terized by long-range order, those for large T' rather parallel the ones in 
nucleation phenomena, where the order is relatively shorter. Also, the 
phase transition at low T is second order when T' ~ T ~ and the critical 
exponents are observed to change over those of the Landau classical theory 
as one tends to increase T' trying to reach the region of the phase diagram 
where the phase transition becomes discontinuous. 

The present model system clearly deserves more attention, once the 
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l imits F ~  oo a n d / o r  T ' - .  oo are relat ively well unde r s tood  and  one has 

evidence of a rich s t ructure  under  more  general  condi t ions .  We are 
present ly  car ry ing  out  fur ther  M C  analysis ,  and  also the s tudy of the same 
mode l  with a kinet ic  c lus te r -var ia t ion  technique;  we expect  in pa r t i cu la r  to 
ob ta in  some insight  a b o u t  the influence of the rates c(s; x, y) and  c(s; x)  on 
the phase  d iagram.  
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